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Abstract-A theoretical study of laminar forced convection in the thermal entrance region of a rectangular 
duct, subjected to a sinusoidally varying inlet temperature, is presented. Several boundary conditions that 
account for uniform wall heat flux and/or external convections with or without wall thermal capacitance 
effects are considered. Analytical expressions for these problems are obtained through extending the 
generalized integral transform technique. The centerline temperature amp~tud~ are determined as a 
function of Biot number, fluid-to-wall thermal capacitance ratio and dimensionless inlet frequency of inlet 
heat input oscillations. The effects of these variables on the solution are discussed. The eigenvahtes and 

corresponding coefficients are given in tabular forms. 

iNTRODUCTlON 

STEADY and unsteady duct flows with unsteady forced 
convection are of great interest in connection with the 

increasingly greater use of automatic control devices 
for the accurate control of fluid flow in heat exchange 
equipment. Accurate prediction of the transient 
response of heat exchange equipment is highly impor- 
tant, not only to provide for an effective control 
system, but also important for understanding of unde- 
sirable effects such as reduced thermal performance 
and severe thermal stresses which can be produced, 
with eventual mechanical failure. Thus, the thermal 
response of unsteady tem~rature subjected to a per- 
iodic variation of inlet temperature is of great interest 
in engineering applications and also important for 
effective thermal equipment control systems, such as 
heat exchangers and their control. 

Solutions to this problem lead to the solution of 
complex eigenvaIue problems, which are not of the 
conventional Sturm-Liouville type ; the eigenvalues 
and corresponding eigenfunctions are complex num- 
bers and complex valued functions, respectively. The 
main task in the analysis of such problems has been 
the difficulty in finding solutions of the resulting com- 
plex eigenvalue problem. 

Sparrow and De Farias [I] presented an analysis of 
periodic forced convection with slug flow in a parallel 
plate channel with sinusoidally varying inlet tem- 
perature and time- and space-dependent wall tem- 
perature. The wall temperature was dynamically 
determined by a balance of the heat transfer rate and 
the energy storage. Numerical evaluation of the ana- 
lytical results provided the time and space dependence 
of the wall and bulk temperatures and the Nusselt 
number. Their work appears to be the first analysis of 
this type of problem. An exact solution to the transient 

energy equation for laminar slug flow in a parallel 
plate channel with a sinusoidal variation of inlet tem- 
perature was obtained in ref. [2]. A general solution 
to the transient energy equation under constant wall 
temperature or zero heat flux boundary conditions 
for the decay of inlet temperature distributions of 
incompressible transient forced convection between 
parallel plates was obtained in ref. [3]. Cotta and 
Ozisik [4] solved the slug flow problem considered in 
refs. [l, 21, for both circular tubes and parallel plate 
channels, by developing an approach for complex 
transcendental equations and providing accurate 
rest&s for the related eigenvalues. Later, Cotta et al. 
[S] extended their previous study to laminar forced 
convection under the constant wall temperature con- 
dition. 

Kakac et al. [6, 71 designed and built an exper- 
imental set-up and carried out some experimental 
research. Recently, they compared the experimental 
findings with the theoretical studies of the temperature 
amplitude at the centerline of the rectangular duct 
[8, 91. The comparison showed that the theoretical 
analysis is in good agreement with the experimental 
investigation 

In the present work, the unsteady laminar forced 
convection in the thermal entrance region of a parallel 
plate channel is considered. The problems for other 
duct geometries could be solved by the same method 
and procedure. 

The inlet temperature is assumed to vary period- 
ically with time. The thermal response of the system 
to these variations is to be determined after the initial 
transients die out. In practical applications, the inlet 
temperature of a heat exchanger may vary as a func- 
tion of time. A general time-dependent inlet condition 
can be expanded in terms of sine and cosine function 
by use of Fourier series. Therefore, authors believe 
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NOMENCLATURE 

a* fluid-to-wall thermal capacitance ratio, t time variable [s] 

PC,&%vG~) T temperature [K] 

a, constant, defined by equation (17) AT(y) inlet temperature amplitude profile 

ank element of matrix A, defined by equation T, ambient temperature around the 

(9b) experimental set-up [K] 
A dimensionless temperature amplitude u(y) velocity profile across the test section 

function [m s-r] 
A N x N matrix, defined by equation (27) U(q) dimensionless velocity profile 
A nk coefficient, defined by equation (25) U, mean velocity [m s-l] 
Bi modified Biot number, h,d/k II,’ nth eigenvector of problem (39) 

[dimensionless] X axial coordinate [m] 

G coefficient, defined by equation (41) Y normal coordinate [m] 

G equivalent wall specific heat [kJ kg-’ K-r] Y, eigenfunction corresponding to the nth 

CP specific heat of the fluid at constant eigenvalue, defined by equation (5). 
pressure [kJ kg-’ K-‘1 

d half distance between parallel plates [m] Greek symbols 

D, equivalent diameter of parallel plate fluid thermal diffusivity, k/pC, [m SC*] 
channel, 4d [m] ; inlet frequency [Hz] 

c, constant, defined by equation (18) 6 nk 6 function : for n = k, 6,, = 1; for n # k, 

fn coefficient, defined by equation (24b) 6, = 0 

F* coefficient, defined by equation (50) V normal coordinate, y/d [dimensionless] 

f’ coefficient vector, defined by equation 0(5, n, t) dimensionless temperature 

(26b) 8(& q) quasi-steady dimensionless 

gn coefficient, defined by equation (45) temperature, defined by equation (3) 

Gtl coefficient, defined by equation (46) e”,(t;, n) integral transfer, defined by 
h convective heat transfer coefficient outside equation (23) 

the wall [w me2 K-‘1 0 + nth eigenvector for equation (9a) 

h, equivalent heat transfer coefficient Ati(q) inlet temperature amplitude profile, 
between inner wall and ambient fluid at AT(y)/AT= [dimensionless] 
temperature T, , (1 /h + L/k,) ’ A” nth eigenvalue 
[Wm-‘K-l] P” eigenvalues of equation (9a) 

i imaginary number, J - 1 5 axial coordinate, 
Im imaginary part of the complex value in (x/De) (Wd) *iWe Pr) 

equations (52) [dimensionless] 
k fluid thermal conductivity [Wm-’ K-l] P fluid density [kg m-‘1 
L thickness of the wall p,,, equivalent density of the wall [kgme3] 
N number of terms in series r time, tit/d* [dimensionless] 
N,, norm of the eigenproblem defined by 4 phase lag 

equation (19) !CJ inlet frequency, 2x/Sd*/a [dimensionless]. 
Nu Nusselt number, hd/k 
Pr Prandtl number, v/u [dimensionless] Superscript 

4 wall heat flux, q,d/(kAT,) [dimensionless] 1 lowest order solution. 
qw wall heat flux [w mm21 
Re Reynolds number, U,,,D,/v [dimensionless] Subscripts 
Re real part of the complex value in equations c centerline value 

(52) W value at the wall. 

that the results of sinusoidal variation of inlet tem- parameters, such as modified Biot number and fluid- 
perature is very basic for further research of the to-wall thermal capacitance ratio, which are difficult 
unsteady forced convection under the general time- to perform in the experiments. The eigenvalues and 
dependent inlet condition. corresponding coefficients are also listed in the tables, 

The theoretical analysis is extended to more general which could be used to predict the temperature dis- 
boundary conditions of the problem given in ref. [8]. tribution and to evaluate the unsteady performance 
Analytical results are discussed for various inside the channel of a heat exchanger. 
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PROBLEM FORMULATION 

Let us consider unsteady forced convection with 
fully developed laminar flow through parallel plates 
whose walls are separated by a distance of 2d, as 
shown in Fig. 1. 

Assuming that the fluid flows through the duct with 
negligible viscous dissipation, negligible axial 
diffusion and constant fluid thermophysical proper- 
ties, the energy equation governing the diffusion in 
the y-direction and the convection in the x-direction 
for the thermal entrance region can be written as 

aT 
z+u(yg= .a’T 

dy2’ 

for x > 0, 0 < y < d, t > 0. (1) 

Let us consider the inlet condition for this problem 
to be the real part of the following periodic condition : 

T(0, y, t) = T, +AT(y) eiB’, for 0 < y < d, t > 0. 

(2) 

In addition to the inlet condition, equation (1) 
should satisfy the symmetry condition at the centerline 
of the duct 

ar 
- = 0, 
ay 

at y = 0, for x > d, t > 0. (3) 

At the outside of the walls, three kinds of boundary 
condition could be specified : 

(1) Constant heat flux across the walls 

_kaT = &, 
ay 

at y = d, for x > 0, t > 0. (4a) 

(2) Neglecting the effects of wall thickness and wall 
thermal capacitance, only considering the external 
convective heat transfer 

h(T- T,)+kg = 0, 1 
at y = d, for x > 0, t > 0. (4b) 

(3) Accounting for both external convection and 
wall thermal capacitance 

h,(T-T,)+kg+(~c)~L$= 0, 

at y = d, for x > 0, t > 0. (4) 

I 
Flow 2d 

Unhealed 
entry region 

FIG. 1. The geometry of the theoretical analysis. 

Here the initial condition is not necessary, since 
only the periodic solution is of interest. 

With the introduction of the following dimen- 
sionless parameters : 

rl = y/d, 5 = C4~,)W4Zl(~e f’4 

z = a/d*, 9 = (T- T,)/AT, 

fl = /ld’/cc, q = q,d/(kAT,), Nu = hdlk, 

Bi = h,d/k, a* = (pC,),d/p,C,L (5) 

and 

U(V) = u(Y)/~,, Am = AT(y)lAT,. (6) 

Equations (l)-(4) can now be rewritten in dimen- 
sionless form as : 

governing equation 

for 0 < rj < 1, < > 0, z > 0 (7) 

inlet condition 

0(O,q,z) = A8(q)eiR’, for r > 0 

symmetry condition 

ae 
- = 0, 
a? 

at rl = 0, for { > 0, z > 0 

constant wall heat flux condition 

(8) 

(9) 

ae 
it&- 

- -4, at q=O, for c>O, r>O (lOa) 

convective heat transfer condition without con- 
sidering the wall thermal capacitance 

N~0+~=0, at ‘I= 1, for t>O,z>O 
all 

(lob) 

convective heat transfer condition considering the 
wall thermal capacitance 

Bi@+ C! + L!! = 0, 

atj a*a7 

at q = 1, for 5 > 0, ‘s > 0. (1Oc) 

If Nu goes to infinity, equation (lob) gives a con- 
stant wall temperature boundary condition ; if Nu 
goes to zero, equation (lob) becomes an insulated 
boundary condition. If a* goes to infinity, then the 
wall capacitance effects become negligible in equation 
(lOc), the modified Biot number (Bi) becomes the 
Nusselt number (Nu). Thus, equation (10~) 
approaches to equation (lob). 

The solution to the unsteady state energy equation 
(7) with inlet condition (8) under the three different 
boundary conditions (lOa)-( 1Oc) together with (9) are 
presented in the following sections. 
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Case I (1) Solutionfor B,({,q). The solution of 0,(&q) is 
In this case we consider the governing equation obtained by the method of separation of variables and 

under the constant wall heat flux boundary condition. is given by [l l] 
For this boundary condition, the governing equa- 

tion, inlet condition and boundary conditions are as 
follows : 

for O<g< 1, <>O, r>O (lla) where 

B(0, n, t) = A~(~) e’““, for O<n< 1, r>O (lib) 

.qEtoA2 [l -exp t-G5)1Yn(v) (16) 
” ” 

(17) 
ae 
- = 0, 
aq 

at n = 0, for t > 0, T > 0 (Ilc) 

a0 

&II= -qy 
at q=l, for <>O, r>O. (lld) 

The foliowing Sturm-Liouville problem can be 

(18) 

(19) 

determined by the numerical method, such as, the 
‘sign-count’ method [lo], for a parabolic velocity pro- (2) Solution for O,(& q, t). Since the boundary con- 

file WY) 
ditions for O,(<, q, z) are homogeneous, introducing 

d2Y MS, 4, r) = e&d* J&L II) (20) 
d$+ifU(y)Y,=O, for O<y< 1 (12a) 

and substituting equation (20) into equation (I 5), we 

dY 
obtain the following equations : 

---ilEO, y=() 
dy 

U2b) a?6 aB 

dY 
U(q) a?2 - rjg -1SB = 0, 

“=o, y’l. 

dy 
(lk) for O<fl< 1, f>O (21a) 

We separate the dimensionless temperature dis- 
tribution into two parts as 13,(<, v) and O,(& q, r) 

QF,ll,r) = Q,(5,V)+@,(<,%z) (13) 

8(0,~) = A@(r,r), for 0 < g < 1 

a0 
-- = 0, 
avl 

at 11 = 0, for c > 0 

(21b) 

(21c) 

in which 0,(&q) and @,(t,q,r) satisfy the following 
differential equations and inlet ~undary conditions : !!=, 0, 

art 
at rj = 1, for 5 > 0. (2Td) 

By the use of the eigenvalues and eigenfunctions 
determined by system (12), the following integral 

S,(O,q)=O, for O<rj< 1 (14b) 
transform pairs are defined : 

80, - = 0, at q = 0, for 5 > 0 
ap1 

(I&) 

and 

ah and 

all -qy 
at q=l, for c$>O (14d) 

RI(& = -- - U(V) Y,(V)& 9) drl. (23) 

Equation (2la) and inlet condition, equation (21b), 
could be transformed to problem (24) by multiplying 

for O<q<l, s” > 0, T > 0 (Isa) both sides of the equations by Y,(u), and integrating 

f12(0, q, T) = A@(V) ei*‘, 
them 

as, 

for O<q< 1, r>O (15b) (24a) 

3~=0, at rj=O, for t>O, r>O (15c) 
i&(O) = ’ L u(y~)A@(r) Yk drl = .fk (24b) 

as2 
s Q JNk 

- = 0, at v = 1, for g > 0, 7 > 0. (15d) 
aq 

where 
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s 1 

A,, = Akrr = 

1 
~ Y,Y,d+ 

0 ,/(NnNJ 
(25) 

Taking a very large (but finite) N in the summation 
to satisfy any accuracy criterion, e+(g) and f + can 
be defined as 

e+(5) = (Qo,~,,...,&J (26a) 

f = (fO*fi*...,.L) (26b) 

and an (N+ I) x (N+ 1) matrix A by 

aij = (6,lf + IRA,) (i,j = 0, 1,2, . . . , fV) (Xc) 

then, equations (24) can be rewritten as 

dO+ 

-SCAB+ =O 
CW 

8’(O) = f’. G-W 

Usually, it is very difficult to get the analytical solu- 
tion for t?+, however, the numerical solution may 
easily be found. After solving for fI+, and returning 
to equations (22) and (20), the solutions for 0,(& ~7) 
and S({, q, 7) can be determined. The details of obtain- 
ing the solution are given in the next section. 

Case II 
For the convective boundary condition without 

considering the effect of wall thermal capacitance, 
the governing equation, inlet condition and boundary 
conditions are respectively 

a0 
;i;+u(‘l)$=$, 

for O<g<l, <>O, 7>0 (28a) 

@(O, 9,~) = A@(Q) eMT, for O<q<l, 7>0 

(28h) 

for 5 > 0, z > 0 (28~) 

= 1, for 5 > 0, 7 > 0, 

(28d) 

The related eigenvalue problem is specified by the 
following : 

d2Y, 

dy2 
+L;,2v(y)Y, = 0 (29a) 

For this condition, it is not necessary to separate 
the dimensionless temperature e(<, q, 7) as the super- 
position of two solutions as we did before, because of 
the homogeneous boundary conditions. 

Introducing the same definitions and assumptions 
for Case I, we can find the same formulations for 
0({, q, T), as e,g, q, 7) as in Case I. 

Assuming 

W, 9,7> = eiR* @(<, ~1 (30) 

the problem for f3(& ~,7) is then changed to a problem 

for &5, ~1, as 

(314 
B(O,q) = A@(q), for 0 < q < 1 (3lb) 

aB 
- = 0, 
all 

at r] = 0, for 5 > 0 (3lc) 

N~~+~=O, at v=l, for {>O. (31d) 

By using the eigenfunctions determined by equa- 
tions (29), defining the integral transform pairs as in 
Case I, equations (22) and (23), transforming equa- 
tions (31) by multiplying both sides of the equations 
by Yk(q), and then inte~ating them, by the same 
procedures as before, the same differential equations 
for 8,(t) and vector-matrix expression, as in Case I, 
equations (26) could be obtained. 

Note that the eigenvalues and eigenfunction in this 
case are different from those in Case I. 

Case III 
For the convective boundary condition which con- 

siders the effect of wall thermal capacitance, the 
governing equation, inlet and boundary conditions 
are rewritten as follows : 
ae 
~+U~~~~=~~~, 

for O<q<l, 5>0, 7>0 (32a) 

0(0, q, 7) = A&q) ein’, for 0 < q < 0, 7 > 0 (32b) 

ae 
i7yI = 0, at q = 0, for 5 > 0, 7 > 0 (32~) 

&~+C!+LE!=0, 
all a*az 

at v = I, for 5 > 0, 7 > 0. (32d) 

The logic of solving this problem is a little different 
from the previous two cases. In this case, the periodic 
solution, such as 

e(5, y, 7) = einT &5, r) (33) 

is directly assumed for the decay of the inlet condition 
because of the homogeneous boundary condition. 
Substitution of equation (33) into equations (32) 
results in the following problem for &t, q) : 

Cf - U(q) >: - ifi8 = 0, 
892 

for O<q< 1, t>O 

(344 



which is different from the two previous cases. The 
same vector-matrix form as equations (27) could be 
worked out. 
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&O,q) = A@(q), for 0 < rl < 1 (34b) 

at7 
- = 0, 
a? 

at 9 = 0, for [ > 0 (34c) 

Rig+:= --::(!I, at ?=I, for t>O. (34d) 

First, we consider the homogeneous boundary con- 
dition, i.e. a* approaches infinity. The corresponding 
eigenproblem is the same as that of Case II 

d2Y, 

COMPLETE AND LOWEST ORDER SOLUTION 

Complete solution 
For different cases, the same formulation of the 

differential equation, as equations (27), is obtained 

~+inzU(y)Y,=O, for O<q< 1 (35a) 
drl 

d Y,, _~~_ = 0, q = 0 WV 

SiYn+dy"=O, q= 1. 
d? 

(35c) 

Introducing the integral-transfo~ pairs for the 
function &C, q), as defined in equations (22) and (23), 
and performing the same operation as in Case I, the 
following formulation is obtained : 

Wr, 1) Y,(l)- 
an 

1 -iiz 5 
IX=0 

where Bf, f+ and A are defined in equations (26). 
We can choose a sufficiently large N to satisfy any 
desired accuracy. The numerical study of truncating 
a different number of series terms has been carried 
out. It is shown that the convergent criterion of cal- 
culating the dimensionless amplitudes is smaller than 
5 x 10e4 when N > 25. Once the related eigenvalue 
problem of the N x Nmatrix A, as defined by equation 

(2W 

is solved, the eigenvalues p, and eigenvectors UT 

[l> inruzn,. . . ,z),J, (n = 1,2,. . . , A’), can be deter- 
mined. 

The solution could be constructed from the linear 
combination of independent solutions 

@k(5) = 5 ~8~~ e -e=t, (k = 1,2,. * . ,N) (40) 
n= 1 

From manipulation of the boundary conditions, 
equations (34d) and (35c), the following is obtained : 

or, from the inversion formula, equation (22), one can 
obtain 

Equation (34a) and inlet condition (34b) could be 
transformed as 

(36a) 
n= 1 

where 

+ i’ YJ’~d~l (37) 
Y- 

d8+ 
-zF+A8+ = 0 

S”(0) = f* (38b) 

(A-p&u; = 0 (39) 

where vkn is the kth component of the nth eigenvector. 
By substituting the inlet condition equation (24b), the 
coefficients c, can be determined from the following 
linear algebraic equations : 

i c,vk+n=fk, (k= 1,2 ,..., N). (41) 
II= 1 

The inversion formula equation (22) is then 
employed to provide the complete solution for 8((, q) 

o<q< 1. (43) 

At the centerline of the duct (r) = 0), equation (42) 
could be written as 

W) 
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where 

Lowest order solution 
From a simple inspection of the coefficients matrix, 

we observed that, specifically for smaller values of the 
dimensionless frequency, St, (Q < 0.5) [S] and values 
of the heat capacitance ratio, a* > 0.1, the diagonal 
elements will be dominant compared to the off-diag- 
onal elements. This fact suggests a way of obtaining a 
straightfo~ard approximate solution, i.e. the lowest 
order solution, by taking n = k in the summation 
of equation (36a). This corresponds to a decoupled 
system (36), and shall be a reasonably accurate pro- 
cedure as long as the diagonal elements of the 
coefficient matrix do not substantially differ from their 
eigenvalues. The approximate decoupled system to be 
solved can then be written as 

d5 + (2; + iQ&)e”l, = 0, for { > 0 (46a) 

&(O)=fn, n=1,2,... (46b) 

where the superscript 1 indicates the lowest-order 
approximation of the corresponding variables. Equa- 
tions (46) have the explicit solution as 

g;(t) = fn ,-(#+i~.Q< (47) 

or, once the inversion formula is invoked, we obtain 

e”‘([,q) = f +~e-@~+io”~~ Y,(q). (48a) 
n-1 n 

Substituting equation (48a) into equation (20), the 
dimensionless tem~~ture of the duct is given by 

The amplitude A(g, $I and the phase lag (b(& r,r) are 
then obtained from the following expressions : 

45 4 = We <&t, sN12 + IIm t&t, sH1’) “’ (524 

Based on the above analysis, a computer program 
was constructed to calculate the dimensionless fluid 
temperatures inside the duct. The complete solution 
is readily obtained from equation (44), through the 
use of IMSL subroutines [ll], for complex matrix 
eigenvalue problems and complex linear systems. By 
equation (49), the approximate lowest solution is also 
programmed to assess its range of appli~bility in 
terms of the new parameters, namely Bi and a*. 

RESULTS AND DISCUSSION 

Since the temperature amplitude governs the tem- 
perature distribution inside the duct, all results in 
this section are presented graphically in terms of the 
dimensionless temperatu~ amplitude. 

In Figs. 2 and 3, the effect of Biot number on the 
amplitude of the centerline temperature along the duct 
is presented as a function of dimensionless axial dis- 
tance, 5 = (~/~~)(~~/~‘/(~e~r) for R = 0.1 (the 
inlet frequency is about 0.01-0.02 Hz corresponding 
to the flowing air with d about 0.5 in.). It is seen 

02 . 

0 
0 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 135 

~Xl(kJfbldhPr 

50 

(48b) 
FIG. 2. The effect of Biot number (Bif on complete solution of 
dimensionless centerline temperature amplitude for a* = 0.1. 

At the centerline of the duct, equation (48b) could 
be written as 

10 

where 

After the time dependence is incorporated, both 
complete and lowest order solutions can be expressed 
in polar coordinates as 

@({, q, r) = A(& s) eir”r+91t)f. 

FIG. 3. The effect of Biot number (Bz? on complete solution 

(51) 
of dimensionless centerline temperature amplitude for 

a* = 5 x 10e5. 
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0 015 030 045 060 075 0.90 105 

(X/Dc)lDs/dl2/R~Pr 

I20 135 150 

FIG. 4. The effect of fluid-to-wall thermal capacitance ratio 
(a*) on complete solution of dimensionless centerline tem- 

perature amplitude for Bi = I .O. 

that for the values of a* > 0. I, the effect of Bi on 
dimensionless temperature amplitude variation is very 
strong ; while for values of a* < 5 x lo- 5, all the tem- 

perature amplitude curves along the duct for various 
values of modified Biot number almost converge (see 
Fig. 3). For the case of a* s 0.1, the wall thermal 
capacitance is almost the same order as the thermal 
capacitance of the fluid ; therefore, the dimensionless 
temperature amplitude is more sensitive to the exter- 
nal convection. For the case of a* < 0.1, the wall 
thermal capacitance becomes more and more domi- 
nant, the heat transferred by the external convection 
is relatively unimportant compared with the heat stor- 
age within the wall, i.e. the influence of Bi on the 
centerline temperature amplitude along the duct is not 
significant. 

Figures 46 illustrate the effects of fluid-to-wall 
thermal capacitance ratio on the centerfine tem- 
perature amplitudes along the duct for Bi = 0.1, 10 
and 100 at R = 0.1. It can be seen that for large values 
of wall thermal capacitance (small a* RS O.Ol), the 
storage of heat in the wall will substantially affect the 
dimensionless temperature amplitude along the duct ; 
especially for values of modified Biot number less than 
1, which is more important (see Fig. 4). From these 
three figures, it is clear that the differences among the 
temperature amplitudes along the duct for different 
a* at small values of Bi ( < 1.0) are substantial, while 
those differences for large values of Bi (3 10) are very 

0 0.,5 0.3 0.45 0.60 0.76 0.90 ,a5 1.20 (15 I50 

(X/De)lOeld)2/RePr 

FIG. 5. The effect of fluid-to-wall thermal capacitance ratio 
(a*) on complete solution of dimensionless centerline tem- 

perature amplitude for Bi = 10.0, 

01 ’ a ’ ’ ’ ’ ’ ’ ’ ’ 0 0.15 050 0.45 0.60 0.75 0.90 I.M 1.20 I.?15 I-54 

(X/Oc)(OeldJz/R.Pr 

FIG. 6. The effect of fluid-to-wall thermal capacitance ratio 
(a*) on complete solution of dimensionless centerline tem- 

perature amplitude for Bi = 100. 

small, i.e. all the curves for different a* are very close 
to each other (see Figs. 5 and 6). When Bi is relatively 
large (Bi 2 lo), the heat transfer by external con- 
vection is predominant, and the effect of a* on the 
temperature amplitude along the duct is either small 
(for Bi 5 10) or negligible (for Bi > 10). For the spe- 
cial case of Bi = 00, all curves for different a* (from 
5 x lop5 to co) will converge to a single curve. 

In Fig. 7, the complete solutions with and without 
considering the effect of the wall thermal capacitance 
for Bi = 0.0 (insulating condition) are compared. It 
is shown that the temperature amplitude under insu- 
lating condition without considering wall them& 
capacitance is different from that with considering 
wall thermal capacitance. With insulation, i.e. with no 
heat losses, the amplitude should be a constant if the 
wall thermal capacitance is not taken into account. 
However, if we consider the wall capacitance, the 
amplitude is no longer a constant ; it decays along the 
duct even though there is no external convection. This 
phenomenon should be noted in unsteady heat trans- 
fer problems when the thermal capacitance of insu- 
lation material to the thermal capacitance of the fluid 
is very large (a* < 0.01). 

In Figs. 8-10, the dimensionless temperature ampli- 
tudes along the duct calculated by complete solution 
and lowest order solution methods are compared. It 

0 015 030 0.45 0.60 075 0.90 ID5 1.20 135 I50 

(XIDWe/dhPr 

FIG. 7. The comparison of complete solution and lowest 
order solution of dimensionless center&e temperature 
amplitude with and without considering the wall thermai 

capacitance (a* = 8.5 x 10m5) and for Bi = 0.0. 
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FIG. 8. The comparison of complete solution and lowest FIG. 10. The comparison of complete solution and lowest 
order solution of dimensionless centerline temperature order solution of dimensionless centerline temperature 

amplitude for a* = 0.1 and different Et’ (1 .O, 10.0, 100). amplitude for small Bi (= 1 .O) and small a* (= 5.0 x 10e5). 

can be seen from these figures that, for the conditions 
of a* > 0.1 and Bi > 10, complete solution and lowest 
order solution are identical. For a* = 0.1 and 
Bi = 1 .O, the differences between amplitudes of com- 
plete and lowest order solution are 0.059 (11.9%) at 
5 = 1.0 and 0.065 (19.5%) at 5 = 1.5 (see Fig. 8). In 
the range of 5 x lo-’ < a* < 0.1, the complete solu- 
tion and lowest order solution are close to each other. 
The maximum difference between these two solutions 
is 0.03 (7.7%) at about 5 = 0.65 for the condition of 
Bi > 10 and a* = 8.5 x lop3 (see Fig. 9). When the 
external convection gets less effective, i.e. at very small 
values of Bi (x 1 .O), the deviation between two solu- 
tions becomes more significant for the small value of 
u* (see Fig. 10). From these three figures, it can be 
concluded that if either a* > 0.1 or Bi > 10 is satisfied, 
the complete solutions could be substituted by the 
lowest order solutions within reasonable accuracy. 

The important results of the theoretical analysis are 
also given in tabular form; the coefficients (Gk and 
FJ and eigenvalues (pk and 2:) for equations (44) and 
(49) are tabulated. In Tables 1-3, the first five 
coefficients (G, and Fk) and eigenvalues (pk and 1,‘) 
are listed for a* = 5 x 10e5, 8.5 x 10m3 and a* > 0.1 
in the absence of the external convection condition. 
From these three tables, it is obvious that the first 
coefficients (Gk and FJ are absolutely dominant, 

0 015 0.50 0.45 060 0.75 0.60 1.05 1.20 I.55 IM 
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FIG. 9. The comparison of complete solution and lowest 
order solution of dimensionless centerline temperature 
amplitude for Bi = 10.0 and different a* (5.0x 10m5, 

8.5 x lo-‘, 0.1). 

especially for the lowest order solution, however, the 
first eigenvalues are quite different, which is respon- 
sible for the decay of the temperature amplitude away 
from the inlet. Under the conditions of Tables 1-3, 
the complete solution is recommended since the lowest 
solution cannot predict the temperature variation 
inside the duct correctly. In Tables 4-6, the first ten 
coefficients (Gk and FJ and eigenvalues (pk and 1:) 
are given for Bi = 0.1, 1, > 10 and a* = 8.5 x 10m3. 
Tables 7, 6 and 8 give the first ten coefficients (G, and 
Fk) and eigenvalues & and A:) for u* = 5 x lo-‘, 
8.5 x 10P3, and 2 0.1 for the condition of Bi = 10. The 
last three tables could be used for the condition of 
Bi > 10. By the use of equations (44) and (49) and 
these tables, the transient temperature response along 
the channel could be calculated for different boundary 
conditions. For the cases of Bi > 10, the tables of 
Bi >, 10 at the same u* could be used for substitution. 
From any table, it is clear that the higher mode of the 
eigenvalue increases faster. Thus, the effects of those 
high eigenvalues on the amplitude decrease as eigen- 
values increase. Away from the inlet of the duct, only a 
few of the smaller eigenvalues persist in the calculation 
while the exponential of high order of eigenvalue 
approaches zero much faster. 

CONCLUDING REMARKS 

The analytical solutions to the periodic variation of 
inlet temperature indicate that the fluid temperature 
amplitude decays exponentially with distance along 
the duct. At a fixed frequency, the higher order modes 
tend to zero so fast that ultimately only the basic 
modes usually remain away from the inlet. This has 
been demonstrated in the given tables. The eigen- 
values and series coefficients for complete solutions 
and lowest order solutions (see equations (46) and 
(50)) are very close to each other for Bi 2 10 or 
a* 2 0.1, therefore the complete solutions could be 
substituted by the lowest order solutions for those 
conditions. 

The effect of external convection, i.e. Biot number, 
on the temperature responses along the duct is only 
important in the case of fluid-to-wall thermal capaci- 
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Table 1. The first five coefficients and eigenvalues of considering the effects of wall capacitance, at Bi = 0.0 and a* = 5 x lo-’ 
for both complete and lowest order solutions 

k Gk Pi Fk 2: 
_~ 

1 0.32072B+1+0.82011E-3i 0.20117E+1+0.72862E-li O.l0007E+ 1 0.09968E -9 
2 -0.31090E+O-0.95008E-3i 0.22407E+2+0.10293E+Oi -O.l1940E-7 O.l2243E+2 
3 0.17008E+0+0.25348E-3i 0.64738E+2+0.13061E+Oi -O.O3955E-9 0.45918Ef2 
4 -O.l1588E+O-0.20364E-3i 0.12892E+3+0.1640lE+Oi 0.21339E-8 O.l0090E+3 
5 0.86484E-1+0.11591E-3i 0.21494E+3+0.20350E+Oi O.l5535E-8 O.l7719E+3 

Table 2. The first five coefficients and eigenvalues of considering the effects of wall capacitance, at Bi = 0.0 and a* = 8.5 x lo-’ 
for both complete and lowest order solutions 

k Gk Pk Fk 2 

I O.l2093E+ l+O.l4771E- li 0.19728E+1+0.37485E+Oi O.l0007E+ 1 0.09967E - 9 
2 -0.31598E+O-0.27488E-Ii 0.22009E+2+0.24615E+1i -O.l1940E-7 O.l2243E+2 
3 0.17698E+0+0.23946E-Ii 0.63521E+2+0.61060E+ li -O.O3955E-9 0.45918E+2 
4 -O.l2470E+O-0.22536E-li 0.12632E+3+0.11277E+2i 0.21339E-8 O.l0090E+3 
5 0.97274E- 1+0,21628E- Ii 0.21027E+3+0.18089E+2i O.l5535E-8 O.l7719E+3 

Table 3. The first five coefficients and eigenvalues of considering the effects of wall capacitance, at Bi = 0.0 and a* = 0.1 for 
both complete and lowest order solutions 

k Gk Pk Fk I.2 

1 0.10648E+1+0.11674E+Oi 0.40422E+0+0.92886E+Oi O.l0007E+ 1 O.O9968E-9 

2 -0.72035E- 1 -O.l528OE+Oi 0.12772E+2+0.28317E+li -0.11940E-7 0.12243Ef2 

3 0.99273E-2+0.52130E-li 0.46262E+2+0.35029E+ li -O.O3955E-9 0.45918Ef2 

4 -0.28407E-2-0.25643E- li 0.10116E+3+0.39569E+li 0.21339E-8 0.1009OEf3 

5 O.l1529E-2+0.15288E-Ii 0.17739E+3+0.43358E+ li O.l5535E-8 O.l7719E+3 

Table 4. The first ten coefficients and eigenvalues for the condition of Bi = 0.1 and a* = 8.5 x lo-’ for both complete solution 
and lowest order solution 

1 0.12083E+1+0.14892E3-li 0.19703E+1+0.37647E+Oi O.l0132E+ 1 0.95334E- 1 
2 -0.31556E+O-0.27771E-Ii 0.21986E+2+0.24723E+ li -O.l6720E- 1 O.l25lOE+2 
3 0.17668E+O+0.24262E- li 0.63457E+2+0.61296E+ li 0.50738E-2 0.46248E+2 
4 -O.l2442E+O-0.22911E-li 0.12619E+3+0.11314E+2i -0.24796E-2 O.l0128E+3 
5 0.96982E- 1+0.22067E- li 0.21004E+3+0.18137E+2i O.l4849E-2 0.17760Ef3 

6 -0.82122E- 1-0.23040E- li 0.31477E+3+0.26820E+2i -0.99599E-3 0.27521E+3 
7 0.71989E- 1+0.24388E- Ii 0.44003E+3+0.37742E+2i 0.71820E-3 0.394lOE+3 
8 -0.66679E- l-0.288778- li 0.58508E+3+0.51464E+2i -0.54459E-3 0.53426E+ 3 
9 0.61236E- 1+0.34747E- li 0.74830E+3+0.68634E+21 0.42851E-3 0.69569E+3 

10 -0.53908E- 1-0.47135E- li 0.92611E+3+0.88759E+2i -0.34686E-3 0.87839E+ 3 

Table 5. The first ten coefficients and eigenvalues for the condition of Bi = 1.0 and a* = 8.5 x 10eJ for both complete solution 
and lowest order solution 

k Gk /1k 4 A: 

O.l2073E+ l+O.l6102E- li 0.19432E+1+0.38806E+Oi O.l0883E+ 1 0.66666E + 0 
-0.31352E+O-0.30440E- Ii 0.21762E+2+00.25467E+ li -O.l1655E+O O.l4446E+2 

0.17464E+O+0.27153E- Ii 0.62848E+2+0.62744E+li 0.41902E- 1 0.48835E+ 2 
-O.l2207E+O-0.26247E- li 0.12497E+3+0.11495B+2i -0.21721E- 1 O.l0433E+3 

0.94131E- 1+0.25805E- Ii 0.20791E+3+0.18254E+2i O.l3401E- 1 O.l8102E+3 

-0.78128E- l-0.27413E- Ii 0.31132E+3+0.26646E+2i -0.91528E-2 0.27894E+ 3 
0.66383E- 1+0.29108E-Ii 0.43470E + 3 + 0.36767E + 2i 0.66810E-2 0.39811E+3 

-0.57822E- 1-0.33391E- li 0.57726E+3+0.48554E+2i -0.51110E-2 0.53852E+ 3 
0.48707E- 1+0.36773E- li 0.73790E+3+0.61435E+2i 040488E-2 0.70019l?+3 

-0.38362E- 1-0.41609E- li 0.91572E+3+0.73787E+2i -0.32948E-2 0.88311E+3 
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Table 6. The first ten coefficients and eigenvalues for the condition of Bi 3 10 and a* = 8.5 x lo-’ for both complete solution 
and lowest order solution 

1 0.11935E+1+0.1~86~-li 0.17378E+l+O.272lOE+~ O.l1831E+l O.l6056E+ 1 
2 -0.2856OE+O-0.2532IE--Ii 0.20283E+2+0.15247E+ li -0.26628E+O 0.19426Ef2 
3 0.14818E+0+0.21260E-Ii 0.59454E+2+0.33933E+ li O.l3272E+O 0.57696Ef2 
4 -0.95’736E- 1 -O.l8980E- li 0.11934E+3+0.56486E+li -0.83202E- 1 O.l1670E+3 
5 0.68499E- 1 +O.l6705E- Ii 0.20OOOE+3+0.81609E+li 0,58334E- 1 0.19659E+3 

6 -0.52112E- 1 -O.l5319E- Ii 0.30150E+3+0.10830E+2i -0.43738E- 1 0,29746E+ 3 
7 0.41212E- l+O.l3778E- Ii 0.42387E + 3 +O. 13598E+ 2i 0.34305E - I 0.41936E+3 
8 -0.33512E-f-O.l2812E-Ii 0.56715E+3~O.l~lOE~2i -0.27795E- 1 0.56235E+ 3 
9 0.27843E-l+O.l1652E-Ii 0.73139E+3+0.192378+2i 0.23081E- 1 0.726448+3 

10 -0.23467E-l-O.l0933E-li 0.91661E+3 +0.22053E+2i -O.l9542E- 1 0.91167E+3 

Table 7. The first ten coefficients and eigenvalues for the condition of Bi > 10 and a* = 5 x 10m5 for both complete solution 
and lowest order solution 

k Gk Pk Fk AZ 

1 O.l2074E+ 1+0.87908E-3i 0.20380E+ 1+0.74737E- li O.l183lE+ 1 0.16056E-t 1 
2 -0.31278E+O-O.l0738E-2i 0.22610E+2+0.11844E+Oi -0.26628E+O O.l9426E+2 
3 0.17170E+0+0.35013E-3i 0.65249E+2+0.17043E+Oi 0.13272EfO 0.57696E + 2 
4 -O.l1735E+O-0.28163E-3i 0.12987E+3+0.23776E+Oi -0.83202E- 1 O.l1670E+3 
5 0.87729E- I +O.l6737E-3i 0.21~3E+3~0.32016E+0i 0.58334E- 1 O.l9659E+3 

6 

: 
9 

10 

-0.70479E-I-0.1309513-3i 0.32493E+3+0.41685E+~ -0.43738E- I 0.29746E+3 
0.57845E- 1+0.85620E-4i 0.45536Ef3 +0.52670E+Oi 0.34305E- I 0.41936E+3 

-0.49723E- 1-0.54035E-4i 0.60772E+3+0.64880E+Oi -0.27795E- 1 0.56235E+ 3 
0.42591E- 1+0.26202E-4i 0.78203E+3+0.78204E+Oi 0,23081E- 1 0.72644Ef3 

-0.38012E- l-0.96991E-6i 0.97830E+3+0.92526E+Oi -O.l9542E- 1 0.91167Ef3 

Table 8. The first ten coefficients and eigenvalues for the condition of Bi = IO and a* B 0.1 for both complete solution and 
lowest order solution 

k Gk pk Fk A: 

0.11832E+l+0.28043E-2i O.l6072g+ 1+0.98530E- li O.Il83lEf1 O.I6056E+ 1 
-0.26652E+O-0.44836E-2i 0.19435E-i-2+0.26122E+Oi -0.26628E+O 0.19426Ef2 

0.13289E+O+O.29336E-2i 0.57712~+2+0.46224E+~ 0.13272EiO O.S7696E+ 2 
-0.83323E- 1-0.23917E-2i O.l1672E+3+0,6782OE+~ -0.83202E - 1 O.l1670E+3 

0.58424E-l+O.l9280E-2i 0.19662E+3+0.90549E+Oi 0.58334E- 1 O.l9659E+3 

6 -0.43807E-l-O.l6554E-2i 0.29749E+3+0.11303E+li -0.43738E- 1 0.29746E + 3 
7 0.34359E- 1 +O.l4193E-2i 0.4194OE+3+0.13573E+ li 0.34305E - 1 0.41936E+3 
8 -0.27837E- I -O.l2514E-2i 0.56238E+3-tO.l5782E+ li -0.27795E- 1 0.56235E+ 3 
9 0.23’116E-1+0.11069E-2i 0.72648E+3+0.17974E+ li 0.2308IE- 1 0.72644E+3 

10 -0.19%9E-l-0.99553E-3i 0.9~~7OE+3+0.20122E+li -O.l9542E- 1 0.91167E+3 

tance ratio, a* > 0.1. For II* < 5 x lo-‘, all the curves 
for different external convection are confined to a very 
small region. For strong external convection 
(Bi 2 lo), the effect of thermal capacitance ratio G* is 
very small or negligibie. As external convection gets 
less effective (Bi c l.O), the effects of a* are quite 
important and cannot be neglected. In the extreme 
case, Bi = 0.0 (insulated boundary condition), the 
effects of a* are very large, implying that, in transient 
forced convection it is necessary to consider the ther- 
ma1 capacitance of the insuking material, which 
directly affects the thermal responses inside the chan- 
nel. In heat exchanger equipment, the thermal capaci- 
tance of insulating material should be considered for 
the unsteady operation. Even if there is no external 
convection in unsteady operation, the boundary con- 

1. 

dition may not be simply thought of as no heat losses 
as we did in steady state. 
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TRANSFERT THERMIQUE VARIABLE DANS UNE ENTREE POUR UN 
ECOULEMENT LAMINAIRE AVEC VARIATION PERIODIQUE DE LA TEMPERATURE 

D’ENTREE 

R&sum&On presente une etude theorique de la convection laminaire for&e dans la region d’entrte dun 
conduit rectangulaire, soumise a une temperature d’entree variant sinusdidalement. On considere plusieurs 
conditions aux limites qui tiennent compte d’un flux par&al uniforme et/au de convections externes avec 
ou sans effet de capacitance thermique de paroi. Des expressions analytiques sont obtenues a partir de la 
technique gtneralisee de la transformh intigrale. Les amplitudes de temperature sur l’axe sont dbterminees 
en fonction du nombre de Biot, du rapport des capacitances thermiques fluide/paroi et de la frequence 
adimentionnelle des oscillations thermiques a l’entree. On discute les effets de ces paramttres sur la solution. 

Les valeurs propres et les coefficients correspondants sont donnts sous forme tabulte. 

INSTATIONARER WARMEUBERGANG IM EINLAUFBEREICH EINER LAMINAREN 
~TRBM~NC~MITPERIODI~CHERANDER~NC~ DEREINTRITTSTEMPERATUR 

Zusammenfassung-Die laminare erzwungene Konvektionsstriimung im thermischen Einlaufgebiet eines 
Rechteckkanals wird untersucht, wobei die Eintrittstemperatur sinusfiirmig schwankt. Dabei werden 
verschiedene Randbedingungen betrachtet : gleichfiirmige Wlrmestromdichte an der Wand und/oder 
lul3ere Konvektionsstromungen mit oder ohne Einfliisse der Wiirmekapazitiit der Wand. Fiir diese Prob- 
leme werden durch Erweiterung der verallgemeinerten Integral-Transformationstechnik analytische Aus- 
driicke ermittelt. Die Temperaturamplituden im Striimungskern werden als Funktion der Biot-Zahl, des 
Verhlltnisses der Wlrmekapazitaten von Fluid und Wand sowie der dimensionslosen Frequenz der Tem- 
peraturschwankung am Eintritt bestimmt. Der EinfluB dieser Variablen auf die Liisung wird diskutiert. 

Die Eigenwerte und die entsprechenden Koeffizienten werden tabellarisch angegeben. 

HEYCTOI%IIIBbIti TEI-IJIOI-IEPEHOC HA TEI-IJIOBOM BXOAHOM Y9ACTKE I-IPM 
JIAMHHAPHOM TE’IEHHH C I-IEPMO~Ii’IECKRM II3MEHEHHEM TEMI-IEPATYPbI HA 

BXOAE 

~TaqUII--TeopeTH~~KH HCCJleAyeTCK JIaMHHapHaK BblH~AeHHKK KOHBeKluiJI Ha TeWlOBOM BXOAHOM 

yqacrKe KaHma npn~oyronb~oro ceqeriua B ycnonsinx cmiycosinanbuoro u3MeHerimt rehfneparyphr na 
BXOAe. PacCMaTpHBaloTCfi HeCKO,,bKO BNAOB rpaHHVHblX yCJlOB&iii C yWTOM OAHOpOAHO,-0 TeII,IOBOrO 

noTorra Ha CTeHKe si (rinH) erieumek KOHB~KWH np~ H~H¶HH mui ~TC~TCTBHH *KT~B TennoeMKocT54 

CTeHKH. nOCpeACTBOM MOAEi&iKal&iH 0606meHHoro MeTOAa HHTeIJZK%“bHbIX npeo6pa30BaHu2i nonyYeebI 

aHamTwtecKsie pemeHHn m2neAyehmx 3aAa9. OnpexenmoTcn ahinnnrynbr TehmepaTypbi Ha cpeAHeii 

JUTHUH KaK tjQ’HKl@iH WE.lIa 6H0, OTHOIIleHH,, TenJWe.MKOCTeii XCEAKOCTH H CTeHKH, a TaKZ%e 6e3pa3Mep- 

HO5 YaCTOTbI TeMOBbIX OC~E”,IK~ii Ha BXOAe. 06Cy;asaeTCK BABIlHHe yKa3aHHblX nepeMeHHMX Ha 

petIteHue. npllBOnnTCn Ta6nnqbi CO6CTBeHHMX 3HaYeHHii H COOTBeTCTByIOILIHX K03$$HIlJ,eHTOB. 


