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Unsteady thermal entrance heat transfer in
laminar flow with a periodic variation of inlet
temperature
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Abstract—A theoretical study of laminar forced convection in the thermal entrance region of a rectangular
duct, subjected to a sinusoidally varying inlet temperature, is presented, Several boundary conditions that
account for uniform wall heat flux and/or external convections with or without wall thermal capacitance
effects are considered. Analytical expressions for these problems are obtained through extending the
generalized integral transform technique. The centerline temperature amplitudes are determined as a
function of Biot number, fluid-to-wall thermal capacitance ratio and dimensionless inlet frequency of inlet
heat input oscillations. The effects of these variables on the solution are discussed. The eigenvalues and
corresponding coefficients are given in tabular forms.
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INTRODUCTION

SteADY and unsteady duct flows with unsteady forced
convection are of great interest in connection with the
increasingly greater use of automatic control devices
for the accurate control of fluid flow in heat exchange
equipment. Accurate prediction of the transient
response of heat exchange equipment is highly impor-
tant, not only to provide for an effective control
system, but also important for understanding of unde-
sirable effects such as reduced thermal performance
and severe thermal stresses which can be produced,
with eventual mechanical failure. Thus, the thermal
response of unsteady temperature subjected to a per-
todic variation of inlet temperature is of great interest
in engineering applications and also important for
effective thermal equipment control systems, such as
heat exchangers and their control.

Solutions to this problem lead to the solution of
complex eigenvalue problems, which are not of the
conventional Sturm-Liouville type; the eigenvalues
and corresponding eigenfunctions are complex num-
bers and complex valued functions, respectively. The
main task in the analysis of such problems has been
the difficulty in finding solutions of the resulting com-
plex eigenvalue problem.

Sparrow and De Farias [1] presented an analysis of
periodic forced convection with siug flow in a parallel
plate channel with sinusoidally varying inlet tem-
perature and time- and space-dependent wall tem-
perature. The wall temperature was dynamically
determined by a balance of the heat transfer rate and
the energy storage. Numerical evaluation of the ana-
tytical results provided the time and space dependence
of the wall and bulk temperatures and the Nusselt
number. Their work appears to be the first analysis of
this type of problem. An exact solution to the transient

energy equation for laminar slug flow in a parallel
plate channel with a sinusoidal variation of inlet tem-
perature was obtained in ref. {2]. A general solution
to the transient energy equation under constant wall
temperature or zero heat flux boundary conditions
for the decay of inlet temperature distributions of
incompressible transient forced convection between
parallel plates was obtained in ref. [3]. Cotta and
Ouzisik [4] solved the slug flow problem considered in
refs. [1, 2], for both circular tubes and parallel plate
channels, by developing an approach for complex
transcendental equations and providing accurate
results for the related eigenvalues. Later, Cotta ef al.
[5] extended their previous study to laminar forced
convection under the constant wall temperature con-
dition.

Kakac et al. [6, 7] designed and built an exper-
imental set-up and carried out some experimental
research. Recently, they compared the experimental
findings with the theoretical studies of the temperature
amplitude at the centerline of the rectangular duct
[8, 9]. The comparison showed that the theoretical
analysis is in good agreement with the experimental
investigation.

In the present work, the unsteady laminar forced
convection in the thermal entrance region of a parallel
plate channel is considered. The problems for other
duct geometries could be solved by the same method
and procedure.

The inlet temperature is assumed to vary period-
ically with time. The thermal response of the system
to these variations is to be determined after the initial
transients die out. In practical applications, the inlet
temperature of a heat exchanger may vary as a func-
tion of time. A general time-dependent inlet condition
can be expanded in terms of sine and cosine function
by use of Fourier series. Therefore, authors believe
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a*  fluid-to-wall thermal capacitance ratio,
pC,dl(py C, L)

a, constant, defined by equation (17)

a, element of matrix A, defined by equation
(9b)

A dimensionless temperature amplitude
function

A Nx N matrix, defined by equation (27)

coeflicient, defined by equation (25)

Bi modified Biot number, A.d/k
[dimensionless)

¢, coefficient, defined by equation (41)

C, equivalent wall specific heat [k¥kg~'K~"]

specific heat of the fluid at constant

pressure [kJkg 'K

d  half distance between parallel plates [m]

D, equivalent diameter of parallel plate
channel, 4d [m]

e, constant, defined by equation (18)

1. coefficient, defined by equation (24b)

F, coefficient, defined by equation (50)

St coefficient vector, defined by equation
(26b)

g. coefficient, defined by equation (45)

G, coefficient, defined by equation (46)

h convective heat transfer coefficient outside
the wall [Wm 2K

h.  equivalent heat transfer coefficient
between inner wall and ambient fluid at
temperature T, (1/h+L/k,) "'
Wm—K™]

i imaginary number, \/ — 1

Im imaginary part of the complex value in
equations (52)

k  fluid thermal conductivity [ Wm~'K™]

L thickness of the wall

N number of terms in series

N, norm of the eigenproblem defined by
equation (19)

Nu Nusselt number, Ad/k

Pr  Prandti number, v/a [dimensionless]

g  wall heat flux, ¢,d/(kAT,.) [dimensionless]

q. wall heat flux [W m™?]

Re Reynolds number, U, D./v [dimensionless]

Re real part of the complex value in equations
(52)

NOMENCLATURE

t time variable [s]

T  temperature [K]

AT(y) inlet temperature amplitude profile

T., ambient temperature around the
experimental set-up [K]

u(y) velocity profile across the test section
[ms™']

U(n) dimensionless velocity profile

mean velocity [m s™!]

nth eigenvector of problem (39)

axial coordinate [m]

normal coordinate [m]

eigenfunction corresponding to the nth

eigenvalue, defined by equation (5).

<
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Greek symbols

«  fluid thermai diffusivity, k/pC, [ms™?]

p  inlet frequency [Hz]

O Ofunction:forn=%, 8, =1;forn#k,
O =0

n normal coordinate, y/d [dimensionless]

0(¢,n,7) dimensionless temperature

f(¢,m) quasi-steady dimensionless
temperature, defined by equation (3)

6.(&, ) integral transfer, defined by
equation (23)

0+ nth eigenvector for equation (9a)

AfB(n) inlet temperature amplitude profile,
AT(y)/AT, [dimensionless}

4,  ntheigenvalue

u, eigenvalues of equation (9a)

& axial coordinate,

(x/D.)(D./d)*/(Re Pr)
[dimensionless)
p  fluid density [kg m~3]
p. equivalent density of the wall [kg m 7]
T time, at/d* [dimensionless]
¢  phase lag
Q  inlet frequency, 2nBd*/a [dimensionless].
Superscript

1 lowest order solution.

Subscripts
c centerline value
w  value at the wall.

that the results of sinusoidal variation of inlet tem-
perature is very basic for further research of the
unsteady forced convection under the general time-
dependent inlet condition.

The theoretical analysis is extended to more general
boundary conditions of the problem given in ref. [8].
Analytical results are discussed for various

parameters, such as modified Biot number and fluid-
to-wall thermal capacitance ratio, which are difficult
to perform in the experiments. The eigenvalues and
corresponding coefficients are also listed in the tables,
which could be used to predict the temperature dis-
tribution and to evaluate the unsteady performance
inside the channel of a heat exchanger.
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PROBLEM FORMULATION

Let us consider unsteady forced convection with
fully developed laminar flow through parallel plates
whose walls are separated by a distance of 2d, as
shown in Fig. 1.

Assuming that the fluid flows through the duct with
negligible viscous dissipation, negligible axial
diffusion and constant fluid thermophysical proper-
ties, the energy equation governing the diffusion in
the y-direction and the convection in the x-direction
for the thermal entrance region can be written as

6T 0T T
() el
y

for x>0,0<y<d t>0. (1)

Let us consider the inlet condition for this problem
to be the real part of the following periodic condition :

T0,y,0) = T, +AT(y)e#, for 0<y<d, t>0.

@

In addition to the inlet condition, equation (1)
should satisfy the symmetry condition at the centerline
of the duct

oT

oy

At the outside of the walls, three kinds of boundary
condition could be specified :

=0, at y=0, for x>d, t>0. 3)

(1) Constant heat flux across the walls

oT
—ka—y=qw, at y=d, for x>0, t>0. (4a)
(2) Neglecting the effects of wall thickness and wall
thermal capacitance, only considering the external

convective heat transfer

T
[h(T— Tm)+k:| =0,
dy

at y=d, for x>0, t>0. (4b)

(3) Accounting for both external convection and
wall thermal capacitance

T

at y=d, for x>0, t>0. (4c)

|

H
! Tho,yt) l
Flow 2d
——— e e e ‘_._._,
Unhealed Periodic Hea [npul
eniry region ¥ (Heated section)

—}

FiG. 1. The geometry of the theoretical analysis.
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Here the initial condition is not necessary, since
only the periodic solution is of interest.

With the introduction of the following dimen-
sionless parameters :

n = y/d, & = (x/D.)(D./d)*/(Re Pr),
1 = at/d*, 0 = (T—T,)/AT.,
Q = Bd*fa,q = qwd/(kATC), Nu = hdlk,
= hdjk,a* = (0C,)d/p.C,Ll (5
and

Um) = u(y)/Un, AB(n) =

Equations (1)-(4) can now be rewritten in dimen-
sionless form as:

AT(p)/AT..  (6)

governing equation

(3 o0 0%
UM =g

for 0<n<l, é€>0,7>0 (7)

inlet condition
60,1, 7)
symmetry condition

a0
an ="

= A0 e, for 1>0 (8)

at n=0, for £>0,t>0 (9

constant wall heat flux condition

00

é;=—q, at n=0, for £>0, t>0 (10a)

convective heat transfer condition without con-
sidering the wall thermal capacitance

i)
Nuf+—=0,

o at =1, for £¢>0,7>0

(10b)

convective heat transfer condition considering the
wall thermal capacitance

.80 1006
B'0+5E+a7$‘0’

atn=1, for £>0, t>0. (10c)

If Nu goes to infinity, equation (10b) gives a con-
stant wall temperature boundary condition; if Nu
goes to zero, equation (10b) becomes an insulated
boundary condition. If a* goes to infinity, then the
wall capacitance effects become negligible in equation
(10c), the modified Biot number (Bi) becomes the
Nusselt number (Nu). Thus, equation (10c)
approaches to equation (10b).

The solution to the unsteady state energy equation
(7) with inlet condition (8) under the three different
boundary conditions (10a)—(10c) together with (9) are
presented in the following sections.



2584

Case 1
In this case we consider the governing equation
under the constant wall heat flux boundary condition.
For this boundary condition, the governing equa-
tion, inlet condition and boundary conditions are as
follows:

EU() j.g_
6+ "6& peR

for 0<y<l, £>0,
= A0y e,

a0
=%
30
a?? - Q)

Q)

>0 (1la)

0(0,7,7) for 0<n<l1,7>0 (11b)

at n=0,for >0, >0 (llc)

atp=1for £>0,7>0. (11d)

The following Sturm-Liouville problem can be
determined by the numerical method, such as, the
‘sign-count’ method [10], for a parabolic velocity pro-

file U(y)

d*y,
P +A:U(NY, =0, for 0<y<1 (12a)
dv,
O =0, y=0 (12b)
dy,
"=0, y=1. (12¢)
dy

We separate the dimensionless temperature dis-
tribution into two parts as 8,(£, n) and 0.(¢, 5, 7)

e(fsﬂ,f) = 0!(6!")“{"92(577]"’:) (13)

in which 8,(£,n) and 6,(¢, 5, 1) satisfy the following
differential equations and inlet boundary conditions:

o8, 80,
U()aé e for0<ny<l1, £>0 (14a)
0,(0,7) =0, for 0<pn<l (14b)
581
=0 at u=0, for £>0 (14¢)
o6
=g, atng=1, for £>0 (l4d)
on
and
a6, 80, 8%
U(’?)J acz 07}22’
for 0O<n<l, £>0, t>0 (15a)
82(0,n,7) = AB(y) €,
for 0<yp<l1, t>0 (15b)
ot
577—-0 atp=0, for £>0, 1>0 (15
00,
5’?——:0, at =1, for £ >0, 1>0. (15d)

W. L1 and S. KakacC

(1) Solution for 8,(&,n). The solution of 6,(¢, ) is
obtained by the method of separation of variables and
is given by [11]

o0& =-Ir-1% ep-20r,0
a=0""n
S O l—exp(=201T,() (16
qu:ONn;t: exp An )] n 7’ ( )
where
a, = j; Ulmn*Y,(n) dn an
1

e, =L Y.(n) dn (18)
N, = L Uly) Yi(n)dn. (19)

(2) Solution for 6,(&,n, 1). Since the boundary con-
ditions for 6,(¢, n, 1) are homogeneous, introducing

0,1, 7) =M (&) (20)

and substituting equation (20) into equation (15), we
obtain the following equations:

o' o0

Uty )—- 7 —iQf =0,
for <<, >0 (21a)
0(0,n) = AB(y), for 0<n<1  (21b)
of .
o 0, at n=0, for £ >0 (21¢)
gg= 0, aty=1, for £¢>0. (21d)

By the use of the eigenvalues and eigenfunctions
determined by system (12), the following integral
transform pairs are defined :

N

e =Yy —

H:OV

8. Y.(m 22

and
~ |
8,(&) = L ?/;—U(n)Yn(n)g(é,n)dn‘ (23)

¥n

Equation (21a) and inlet condition, equation (21b),
could be transformed to problem (24) by multiplying
both sides of the equations by Y, (), and integrating
them

dB,c
¢

0.(0) = jl

+ 228, +iQ 2 GA4,=0 (24a)

1
N UmAB(m) Y dn = fi  (24b)

where
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Y.Y.dn.  (25)

nk = Akn J
\/ (NN
Taking a very large (but finite) N in the summation
to satisfy any accuracy criterion, §%(£) and f* can
be defined as

848 = (0,,0,,...,0% (26a)
ff=Uofi 0 S (26b)
and an (N+1) x (N+1) matrix A by
a; = (87 +i1Q4,) (Gj=0.12,...,N) (26c)
then, equations (24) can be rewritten as
dgg +A0" =0 (27a)
8Ty = f+. (27b)

Usually, it is very difficult to get the analytical solu-
tion for 6%, however, the numerical solution may
easily be found. After solving for 8%, and returning
to equations {22) and (20), the solutions for 8,(&, 1, 7)
and 6(&, n, 1) can be determined. The details of obtain-
ing the solution are given in the next section.

Case 11

For the convective boundary condition without
considering the effect of wall thermal capacitance,
the governing equation, inlet condition and boundary
conditions are respectively

2
g—g+U(ﬂ)Z—g=%g,
for0<np<l1, >0, 7>0 (28a)
B(0,n,1) = Ad(pe™, for0<n<l, >0
(28b)
o0
5§=0, at n=0, for £>0,t>0 (28¢c)

a6
(Nu@—%—a):(), at =1 for £>0, 1> 0.

(28d)

The related eigenvalue problem is specified by the
following :

2

Y,
UMY, =0

e (29a)
d¥y,
T 0, y=0 (29b)
dY,
(Bz Y, +——— iy ) 0, y= (29¢)

For this condition, it is not necessary to separate
the dimensionless temperature 8(¢, 7, ) as the super-
position of two solutions as we did before, because of
the homogeneous boundary conditions.

2585

Introducing the same definitions and assumptions
for Case I, we can find the same formulations for
0(&,n, 1), as 0,(E,4,7) as in Case L.

Assuming

6(5’ 1, 'C) =% g(‘f& ??) (30)

the problem for 8(&, n, 7) is then changed to a problem
for 6(¢, n), as

629 of
U(n) ~ 3% —-iQf=0, for0<n<l, £>0
(31a)
0(0,n) = AB(n), for 0<n <1 (31b)
a0
%=O, at n=_0, for £>0 (31¢c)

Nul(+ g—g= 0, atgp=1, for £>0. (31d)

By using the eigenfunctions determined by equa-
tions (29), defining the integral transform pairs as in
Case 1, equations (22) and (23), transforming equa-
tions (31) by multiplying both sides of the equations
by Y.(#), and then integrating them, by the same
procedures as before, the same differential equations
for ,(¢) and vector-matrix expression, as in Case I,
equations (26) could be obtained.

Note that the eigenvalues and eigenfunction in this
case are different from those in Case .

Case 111

For the convective boundary condition which con-
siders the effect of wall thermal capacitance, the
governing equation, inlet and boundary conditions
are rewritten as follows:

88 o8 2%
Uiz = 53,
o oy
for0<n<l, {>0,t>0 (32a)
6(0,n,7) = AB(n) e, for 0<n<0, >0 (32b)
%:0, atp=0,for £>0,7>0 (32
.00 100
Ble+‘a*’jl+;;*afc"~0,
at =1, for £>0, t>0. (32d)

The logic of solving this problem is a little different
from the previous two cases. In this case, the periodic
solution, such as

0, m,7) = €™ 0(¢,m) (33)

is directly assumed for the decay of the inlet condition
because of the homogeneous boundary condition.
Substitution of equation (33) into equations (32)
results in the following problem for §(Z,1):

%0

an’ U('I) —iF=0, for 0<ny<l, £E>0

56
(34a)
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000,7) = AO(n), for 0<n<1  (34b)
o8
%:0, at y =0, for £¢>0 (34¢)
o9 i
Big+§,}= M};;lg, at =1, for £>0. (34d)

First, we consider the homogeneous boundary con-
dition, i.e. a* approaches infinity. The corresponding
eigenproblem is the same as that of Case I1

2

Y
4+ iU(NY, =0, for 0<n<1 (35a)

dn?
dy,
‘“('i;i“ = 0, = 0 (35b)
dy,
BiY,+—"=0, g=1. (35¢)

dn

Introducing the integral-transform pairs for the
function (¢, n), as defined in equations (22) and (23),
and performing the same operation as in Case I, the
following formulation is obtained :

g, 1
df, [Yk(l)aé(én, D

+4i0, =
~(, 1)”"(1)]—«2 i
n=0

6 \/1 k
X (‘ﬂ(é)In(”)'
/N

v

"

From manipulation of the boundary conditions,
equations (34d) and (35c), the following is obtained :

1 () dYk(I):}
on

—0(z, 1
A &1

[Yk(i)

V(1)
NOA

or, from the inversion formula, equation (22), one can
obtain

=~ *9‘(5 D——

Yo(1) ;Qi
\/Nk a*,c \/(NNk)

Equation (34a) and inlet condition (34b) could be
transformed as

d9k

Y,(1) Yu(DO().

€
a

& + 120, +iQ 2 FA,=0 (36a)
6,(0) = dp = fi (36b)
where
A=y — L [Y,,am(n
VNN a*

+Jl Y.Y: drg} (37

W. L1 and S. Kakac

which is different from the two previous cases. The
same vector-matrix form as equations (27) could be
worked out.

COMPLETE AND LOWEST ORDER SOLUTION

Complete solution
For different cases, the same formulation of the
differential equation, as equations (27), is obtained

AP
~qE HABT =0 (382)
070 = f~ (38b)

where 8%, f* and A are defined in equations (26).
We can choose a sufficiently large N to satisfy any
desired accuracy. The numerical study of truncating
a different number of series terms has been carried
out. It is shown that the convergent criterion of cal-
culating the dimensionless amplitudes is smaller than
5% 107* when N > 25. Once the related eigenvalue
problem of the N x N matrix A, as defined by equation
(26¢)

A-po; = (39
is solved, the eigenvalues p, and eigenvectors v,
[O1sVops-onlunl, (n=1,2,...,N), can be deter-
mined.
The solution could be constructed from the linear
combination of independent solutions

N
0O = Y. cmme ™, (k=12,..

n=1

N (40)

where v, is the kth component of the nth eigenvector.
By substituting the inlet condition equation (24b), the
coeflicients ¢, can be determined from the following
linear algebraic equations:

N
Y ewvh=fo k=12, ,N). (4]
n=1

The inversion formula equation (22) is then
employed to provide the complete solution for (¢, »)

N N
1
0&m =3 ¥ —avke Y, 1)
n:lk:l\.’Nn
N N l )
=YalX Tv;;ew Y,n), 0<n<1 (42)
k=1 n=1

N N
i)=Y ¢ z ———ph e Y (),
=1 nm

\/

O<n<l (43)

At the centerline of the duct (5 = 0), equation (42)
could be written as

. AN |
0(£,0,7) =€ Y ¢ Y, ——v i Y, (0)e
k=1 n=1 N,,

N

=e"" Y oo
ko= 1

N
=e™ ¥ Geemt (44)
k=1



Unsteady thermal entrance heat transfer in laminar flow with a periodic variation of inlet temperature

where
N
= ——p kY, (0 452
Gk ngl\/Nnk ()] (452)
G = (45b)

Lowest order solution

From a simple inspection of the coefficients matrix,
we observed that, specifically for smaller values of the
dimensionless frequency, Q, (Q < 0.5) [5] and values
of the heat capacitance ratio, a* > 0.1, the diagonal
elements will be dominant compared to the off-diag-
onal elements. This fact suggests a way of obtaining a
straightforward approximate solution, i.e. the lowest
order solution, by taking »# = k in the summation
of equation (36a). This corresponds to a decoupled
system (36), and shall be a reasonably accurate pro-
cedure as long as the diagonal elements of the
coefficient matrix do not substantially differ from their
eigenvalues. The approximate decoupled system to be
solved can then be written as

df,

i F(2+iQ4,)0, =0, for £>0 (46a)

00 =f,, n=12,... (46b)

where the superscript 1 indicates the lowest-order
approximation of the corresponding variables. Equa-
tions (46) have the explicit solution as

0(0) = fre~ Grrinams @n

or, once the inversion formula is invoked, we obtain

B =3 — fe G042 (). (482)

ne \/ N n
Substituting equation (48a) into equation (20), the
dimensionless temperature of the duct is given by

- | )
0(&,m,1) =™ Y —];fne"*"“"“w" Y, ().
n= | n

(48b)
At the centerline of the duct, equation (48b) could
be written as

0(£,0,7) = e ¥ F, e+ (49)
n=1

where

S YA (0). (50)

1
Fo=—r
VN,

After the time dependence is incorporated, both
complete and lowest order solutions can be expressed
in polar coordinates as

0%, n,7) = A, n) oL (51

2587

The amplitude A(&,n) and the phase lag ¢(&,n) are
then obtained from the following expressions:

A, m) = {[Re (& mNI*+[Im (05, N} '*  (522)

| Im ()
¢(¢,n) = tan [_"“‘—Re A n))]' (52b)

Based on the above analysis, a computer program
was constructed to calculate the dimensionless fluid
temperatures inside the duct. The complete solution
is readily obtained from equation (44), through the
use of IMSL subroutines [11], for complex matrix
eigenvalue problems and complex linear systems. By
equation (49), the approximate lowest solution is also
programmed to assess its range of applicability in
terms of the new parameters, namely Bi and a*.

RESULTS AND DISCUSSION

Since the temperature amplitude governs the tem-
perature distribution inside the duct, all results in
this section are presented graphically in terms of the
dimensionless temperature amplitude.

In Figs. 2 and 3, the effect of Biot number on the
amplitude of the centerline temperature along the duct
is presented as a function of dimensionless axial dis-
tance, ¢ = (x/D(D./d)*/(Re Pr) for Q= 0.1 (the
inlet frequency is about 0.01-0.02 Hz corresponding
to the flowing air with d about 0.5 in.). It is seen

v v v v
10 Q=01 4
08

< LT

S o5t 07

2 ‘0.

a

£ oa} 1

e
Y.

oz 4

N
o 015 030 045 060 07% 0% 105 (20 135 150
(X/De) (De/d)/RePr

F1G. 2. The effect of Biot number (B} on complete solution of
dimensionless centerline temperature amplitude for a* = 0.1.

Amplituge , &

0 " . . . " N . s "
0 015 030 045 060 075 030 105 120 135 150
(X/De) {De/d) /RePr

FiG. 3. The effect of Biot number (Bi) on complete solution
of dimensionless centerline temperature amplitude for
a* =5x107%
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10 Q=01
08
<
-
:_g 086F
a L0,
& 04
a 04t
o',o,
o2F . o':as . .
o -
EP 2ig-s
) " L A L

0 0I5 030 045 060 075 080 105 420 135 150
(X/De}{Desd)'/RePr

FiG. 4. The effect of fluid-to-wall thermal capacitance ratio
(a*) on complete solution of dimensionless centerline tem-
perature amplitude for Bi = 1.0,

that for the values of a* > 0.1, the effect of Bi on
dimensionless temperature amplitude variation is very
strong ; while for values of a* < 5x 1073, all the tem-
perature amplitude curves along the duct for various
values of modified Biot number almost converge (see
Fig. 3). For the case of a* > 0.1, the wall thermal
capacitance is almost the same order as the thermal
capacitance of the fluid ; therefore, the dimensionless
temperature amplitude is more sensitive to the exter-
nal convection. For the case of ¢* < 0.1, the wall
thermal capacitance becomes more and more domi-
nant, the heat transferred by the external convection
is relatively unimportant compared with the heat stor-
age within the wall, i.e. the influence of Bi on the
centerline temperature amplitude along the duct is not
significant.

Figures 4-6 illustrate the effects of fluid-to-wall
thermal capacitance ratio on the centerline tem-
perature amplitudes along the duct for Bi = 0.1, 10
and 100 at Q@ = 0.1. It can be seen that for large values
of wall thermal capacitance (small o* ~ 0.01), the
storage of heat in the wall will substantially affect the
dimensionless temperature amplitude along the duct;
especially for values of modified Biot number less than
1, which is more important (see Fig. 4). From these
three figures, it is clear that the differences among the
temperature amplitudes along the duct for different
a* at small values of Bi (<1.0) are substantial, while
those differences for large values of Bi (= 10) are very
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(a*} on complete solution of dimensionless centerline tem-
perature amplitude for B = 10.0.
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F1G. 6. The effect of fluid-to-wall thermal capacitance ratio
{a*) on complete solution of dimensionless centerline tem-
perature amplitude for Bi = 100.

small, i.e. all the curves for different a* are very close
to each other (see Figs. 5 and 6). When Bi is relatively
large (Biz 10), the heat transfer by external con-
vection is predominant, and the effect of a* on the
temperature amplitude along the duct is either small
(for Bi = 10) or negligible (for Bi > 10). For the spe-
cial case of Bi = oo, all curves for different o* (from
5x 107 to o0) will converge to a single curve.

In Fig. 7, the complete solutions with and without
considering the effect of the wall thermal capacitance
for Bi = 0.0 (insulating condition) are compared. It
is shown that the temperature amplitude under insu-
lating condition without considering wall thermal
capacitance is different from that with considering
wall thermal capacitance. With insulation, i.e. with no
heat losses, the amplitude should be a constant if the
wall thermal capacitance is not taken into account.
However, if we consider the wall capacitance, the
amplitude is no longer a constant ; it decays along the
duct even though there is no external convection. This
phenomenon should be noted in unsteady heat trans-
fer problems when the thermal capacitance of insu-
lation material to the thermal capacitance of the fluid
is very large (a* < 0.01).

In Figs. 810, the dimensionless temperature ampli-
tudes along the duct calculated by complete solution
and lowest order solution methods are compared. Tt
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amplitude with and without considering the wall thermal
capacitance (a* = 8.5 x 10~%) and for Bi = 0.0.
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order solution of dimensionless centerline temperature
amplitude for g* = 0.1 and different Bi (1.0, 10.0, 100).

can be seen from these figures that, for the conditions
of a* > 0.1 and Bi > 10, complete solution and lowest
order solution are identical. For a* =0.1 and
Bi = 1.0, the differences between amplitudes of com-
plete and lowest order solution are 0.059 (11.9%) at
& = 1.0 and 0.065 (19.5%) at & = 1.5 (see Fig. 8). In
the range of 5x 107° < a* < 0.1, the complete solu-
tion and lowest order solution are close to each other.
The maximum difference between these two solutions
is 0.03 (7.7%) at about & = 0.65 for the condition of
Bi> 10 and a* = 8.5x 1073 (see Fig. 9). When the
external convection gets less effective, i.e. at very small
values of Bi (~1.0), the deviation between two solu-
tions becomes more significant for the small value of
a* (see Fig. 10). From these three figures, it can be
concluded that if either a* > 0.1 or Bi > 101is satisfied,
the complete solutions could be substituted by the
lowest order solutions within reasonable accuracy.
The important results of the theoretical analysis are
also given in tabular form; the coefficients (G, and
F,) and eigenvalues (u, and A7) for equations (44) and
(49) are tabulated. In Tables 1-3, the first five
coefficients (G, and F,) and eigenvalues (g, and 4})
are listed for a* = 5x107%, 8.5x 1072 and a* > 0.1
in the absence of the external convection condition.
From these three tables, it is obvious that the first
coefficients (G, and F,) are absolutely dominant,
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especially for the lowest order solution, however, the
first eigenvalues are quite different, which is respon-
sible for the decay of the temperature amplitude away
from the inlet. Under the conditions of Tables 1-3,
the complete solution is recommended since the lowest
solution cannot predict the temperature variation
inside the duct correctly. In Tables 4-6, the first ten
coefficients (G, and F;) and eigenvalues (u; and 47?)
are given for Bi=0.1, 1, >10 and a* =8.5x 107>,
Tables 7, 6 and 8 give the first ten coefficients (G, and
F,) and eigenvalues (u, and A?) for a* = 5x 107,
8.5% 1073, and > 0.1 for the condition of Bi = 10. The
last three tables could be used for the condition of
Bi > 10. By the use of equations (44) and (49) and
these tables, the transient temperature response along
the channel could be calculated for different boundary
conditions. For the cases of Bi > 10, the tables of
Bi > 10 at the same a* could be used for substitution.
From any table, it is clear that the higher mode of the
eigenvalue increases faster. Thus, the effects of those
high eigenvalues on the amplitude decrease as eigen-
values increase. Away from the inlet of the duct, only a
few of the smaller eigenvalues persist in the calculation
while the exponential of high order of eigenvalue
approaches zero much faster.

CONCLUDING REMARKS

The analytical solutions to the periodic variation of
inlet temperature indicate that the fluid temperature
amplitude decays exponentially with distance along
the duct. At a fixed frequency, the higher order modes
tend to zero so fast that ultimately only the basic
modes usually remain away from the inlet. This has
been demonstrated in the given tables. The eigen-
values and series coefficients for complete solutions
and lowest order solutions (see equations (46) and
(50)) are very close to each other for Bi> 10 or
a* > 0.1, therefore the complete solutions could be
substituted by the lowest order solutions for those
conditions.

The effect of external convection, i.e. Biot number,
on the temperature responses along the duct is only
important in the case of fluid-to-wall thermal capaci-
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Table 1. The first five coefficients and eigenvalues of considering the effects of wall capacitance, at Bi = 0.0 and g* = 5x 10~*

for both complete and lowest order solutions

k Gy i Fe il%

1 0.12072E+1+0.82011E—31 0.20117E+1+0.72862E—1i 0.10007E+1 0.09968E —9
2 —0.31090E + 0—0.95008E — 3i 0.22407E+2+0.10293E 4 0i —0.11940E—7 0.12243E+2
3 0.17008E +0+0.25348E —3i 0.64738E+2+0.13061E +0i —0.03955E—9 0.45918E+2
4 —0.11588E+0—0.20364E — 3i 0.12892E +3+0.16401E + 0i 0.21339E—8 0.10090E +3
5 0.15535E—8 0.17719E+3

0.86484E —1+0.11591E—3i

0.21494E +34-0.20350E + 0i

Table 2. The first five coefficients and eigenvalues of considering the effects of wall capacitance, at Bi = 0.0 and a* = 8.5 x 103

for both complete and lowest order solutions

k Gy i F, A

I 0.12093E+140.14771E— 1 0.19728E + 1 +0.37485E +0i 0.10007E+1 0.09967E—9
2 —0.31598E+0—0.27488E—1i 0.22009E +2+0.24615E + 1i —0.11940E—7 0.12243E+2
3 0.17698E +0+0.23946E — 1i 0.63521E+2+0.61060E + 11 —0.03955E—-9 0.45918E+2
4 —0.12470E+0—0.22536E — 1i 0.12632E+3+0.11277E+2i 0.21339E—8 0.10090E + 3
5 0.97274E—1+0.21628E—1i 0.21027E + 3 +0.18089E + 2i 0.15535E—8 0.17719E+3

Table 3. The first five coefficients and eigenvalues of considering the effects of wall capacitance, at Bi = 0.0 and ¢* = 0.1 for
both complete and lowest order solutions

k Gy 123 F, A

1 0.10648E+1+0.11674E+0i 0.40422E +0 +0.92886E + 0i 0.10007E+1 0.09968E —9
2 —0.72035E—1—0.15280E + 01 0.12772E+2 +0.28317E+ 1i —0.11940E -7 0.12243E+2
3 0.99273E —2+0.52130E — i 0.46262E + 2+ 0.35029E + 1i —0.03955E—9 0.45918E+2
4 —0.28407E —2—0.25643E — li 0.10116E+3+0.39569E + 1i 0.21339E—8 0.10090E +3
5 0.11529E—2+0.15288E— 11 0.17739E+3 +0.43358E + 1i 0.15535E—8 0.17719E+3

Table 4. The first ten coefficients and eigenvalues for the condition of Bi = 0.1 and a* = 8.5 x 10~° for both complete solution

and lowest order solution

k G, e F I
1 0.12083E+1+0.14892E — 1i 0.19703E+ 1+ 0.37647E + 0i 0.10132E+1 0.95334E—1
2 —0.31556E+0—0.27771E—1i 0.21986E+2+0.24723E+ 1i —0.16720E —1 0.12510E+2
3 0.17668E +0+0.24262E — li 0.63457E +2+0.61296E + 1i 0.50738E -2 0.46248E + 2
4 —0.12442E+0—0.22911E—1i 0.12619E+3 +0.11314E +2i —0.24796E—2 0.10128E+3
5 0.96982E —1+0.22067E — li 0.21004E+3+40.18137E+2i 0.14849E —2 0.17760E +3
6 —0.82122E—1—0.23040E— 1i 0.31477E +3+0.26820E + 2i —0.99599E —3 0.27521E+3
7 0.71989E —1+0.24388E — 11 0.44003E+3+0.37742E + 2i 0.71820E—3 0.39410E+3
8 —0.66679E —1—0.28877E— 11 0.58508E + 3 + 0.51464E + 2i —0.54459E -3 0.53426E +3
9 0.61236E — 1 +0.34747TE— li 0.74830E + 3+ 0.68634E + 2i 0.42851E-3 0.69569E + 3
10 —0.53908E— 1 —-0.47135E—1i 0.92611E+3+0.88759E +2i —0.34686E —3 0.87839E+3

Table 5. The first ten coefficients and eigenvalues for the condition of Bi = 1.0 and a* = 8.5 x 1073 for both complete solution

and lowest order solution

k G, He F, A

1 0.12073E+140.16102E— i 0.19432E+ 1 +0.38806E + 0i 0.10883E+1 0.66666E +0
2 —0.31352E+4-0—0.30440E — 1i 0.21762E+2+0.25467E + 1i —0.11655E+0 0.14446E +2
3 0.17464E+0+0.27153E— 11 0.62848E +2+0.62744E + 1i 0.41902E—1 0.48835E+2
4 —0.12207E+0—0.26247E— 1i 0.12497E+3+0.11495E+2i —0.21721E~1 0.10433E+3
5 0.94131E—14-0.25805E —1i 0.20791E+3+0.18254E +2i 0.13401E—1 0.18102E+3
6 —0.78128E—1—~0.27413E—1i 0.31132E + 3 +0.26646E + 2i —0.91528E—2 0.27894E+3
7 0.66383E —1+40.29108E — 1i 0.43470E+3 +0.36767E + 2i 0.66810E —2 0.39811E+3
8 —0.57822E—1—-0.33391E—1i 0.57726E + 3 +-0.48554E + 2i —0.51110E-2 0.53852E+3
9 0.48707E—1+0.36773E—1i 0.73790E + 3 +0.61435E + 2i 0.40488E —2 0.70019E+3

10 —0.38362E —1—0.41609E — 1i 0.91572E+3+0.73787E + 2i —0.32948E—2 0.88311E+3
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Table 6. The first ten coefficients and eigenvalues for the condition of Bi = 10 and a* = 8.5 x 1072 for both complete solution
and lowest order solution

k Gy e F, rH

1 0.11935E+1+40.13486E—1i 0.17378E+1+0.27210E+ 01 0.11831E+! 0.16056E+ |
2 —0.28560E+0—0.25321E~1i 0.20283E+42+0.15247E+ 1i —0.26628E+0 0.19426E+2
3 0.14818E4+0+0.21260E — 1i 0.59454E +2+-0.33933E+ 1i 0.13272E+-0 0.57696E+2
4 —0.95736E—1—0.18980E — 1i 0.11934E + 3+ 0.56486E + 1i —0.83202E 1 0.11670E+3
5 0.68499E — 1 + 0.16705E — i 0.20000E + 3+ 0.81609E + 1i 0.58334E—1 0.19659E + 3
6 —0.52112E—1—0.15319E—1i 0.30150E+ 3 +0.10830E+2i —0.43738E—1 0,29746E+3
7 0.41212E—1+4+0.13778E~ i 0.42387E+3+0.13598E+2i 0.34305E~1 0.41936E+3
g —0.33512E— 1 —0.12812E—1i 0.56715E+3 +0.16410E+2i -0.27795E—1 0.56235E+3
9 0.27843E—-1+0.11652E~1i 0.73139E+3 +0.19237E+2i 0.23081E—1 0.72644E+3
10 —0.23467E—1—0.10933E—~1i 0.91661E+ 3 +0.22053E+2i —0.19542E—1 0.91167E+3

Table 7. The first ten coefficients and eigenvalues for the condition of Bi > 10 and a* = 5 x 107 for both complete solution

and lowest order solution

k Gy e Fy x4

1 0.12074E+14-0.87908E —3i 0.20380E+1+0.74737E—1i 0.11831E+1 0.16056E+ 1
2 —0.31278E+0—0.10738E—2i 0.22610E +2 +-0.11844E + 0i —0.26628E+0 0.19426E + 2
3 0.17170E +0+0.35013E —3i 0.65249E +2+0.17043E + 0i 0.13272E+0 0.57696E +2
4 —0.11735E+0—-0.28163E - 3i 0.12987E +3+0.23776E+ 0i —0.83202E—1 0.11670E+3
5 0.87729E—1+0.16737E—3i 0.21643E+3-+0.32016E+0i 0.58334E—1 0.19659E+3
6 —0.70479E— 1 —0.13095E - 3i 0.32493E+3+0.41685E+ 0i —0.43738E~1 0.29746E+3
7 0.57845E — 1+ 0.85620E — 4i 0.45536E +3+0.52670E + 0i 0.34305E—1 0.41936E+3
8 —0.49723E—1—0.54035E —4i 0.60772E + 3 +0.64880E + 0i —0.27795E—1 0.56235E+3
9 0.42591E — 1 +0.26202E —4i 0.78203E+ 3 +0.78204E + 0i 0.23081E~1 0.72644E +3
10 —0.38012E—1—0.96991E —6i 0.97830E + 3+ 0.92526E + 0i —0.19542E ~1 091167E+3

Table 8. The first ten coefficients and eigenvalues for the condition of Bi = 10 and a* > 0.1 for both complete solution and

lowest order solution

k Gy Hee F, H
1 0.11832E+1+0.28043E — 2i 0.16072E + 1 +0.98530E - 1i 0.11831E+1 0.16056E + 1
2 —0.26652E+0—0.44836E —2i 0.19435E +2+0.26122E+ 0i —0.26628E+0 0.19426E+2
3 0.13289E+0+0.29336E—2i 0.57712E+2+0.46224E+0i 0.13272E+0 0.57696E+2
4 —0.83323E—1—-0.23917E—~2i 0.11672E+3+0.67820E + 01 —0.83202E—1 0.11670E+3
5 0.58424E —140.19280E —2i 0.19662E + 3 +0.90549E +0i 0.58334E—1 0.19659E+3
6 —0.43807E—1—0.16554E —2i 0.29749E +3+0.11303E + 1i —0.43738E~1 0.29746E + 3
7 0.34359E—1+0.14193E—2i 0.41940E +3 +0.13573E+ 1i 0.3430SE—1 0.41936E+3
8 —~0.27837TE—1—0.12514E—2i 0.56238E +3+0.15782E + 1i —0.27795E—1 0.56235E+3
9 0.23116E—1+0.11069E ~2i 0.72648E+3+0.17974E+ i 0.23081E—1 0.72644E+3

10 —0.19569E—1—0.99553E - 3i 091170E+3+4+0.20122E+1i —0.19542E—1 091167E+3

tance ratio, @* > 0.1. For a* < 5 x 1073, all the curves
for different external convection are confined to a very
small region. For strong external convection
(Bi = 10), the effect of thermal capacitance ratio a* is
very small or negligible. As external convection gets
less effective (Bi < 1.0), the effects of a* are quite
important and cannot be neglected. In the extreme
case, Bi = 0.0 (insulated boundary condition), the
effects of a* are very large, implying that, in transient
forced convection it is necessary to consider the ther-
mal capacitance of the insulating material, which
directly affects the thermal responses inside the chan-
nel. In heat exchanger equipment, the thermal capaci-
tance of insulating material should be considered for
the unsteady operation. Even if there is no external
convection in unsteady operation, the boundary con-

dition may not be simply thought of as no heat losses
as we did in steady state.
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TRANSFERT THERMIQUE VARIABLE DANS UNE ENTREE POUR UN
ECOULEMENT LAMINAIRE AVEC VARIATION PERIODIQUE DE LA TEMPERATURE
D’ENTREE

Résumé—On présente une étude théorique de la convection laminaire forcée dans la région d’entrée d’un
conduit rectangulaire, soumise & une tempeérature d’entrée variant sinusoidalement. On considére plusieurs
conditions aux limites qui tiennent compte d’un flux pariétal uniforme et/ou de convections externes avec
ou sans effet de capacitance thermique de paroi. Des expressions analytiques sont obtenues a partir de la
technique généralisée de la transformée intégrale. Les amplitudes de température sur I’axe sont déterminées
en fonction du nombre de Biot, du rapport des capacitances thermiques fluide/paroi et de la fréquence
adimentionnelle des oscillations thermiques a Pentrée. On discute les effets de ces paramétres sur la solution.
Les valeurs propres et les coefficients correspondants sont donnés sous forme tabulée.

INSTATIONARER WARMEUBERGANG IM EINLAUFBEREICH EINER LAMINAREN
STROMUNG MIT PERIODISCHER ANDERUNG DER EINTRITTSTEMPERATUR

Zusammenfassung—Die laminare erzwungene Konvektionsstromung im thermischen Einlaufgebiet eines
Rechteckkanals wird untersucht, wobei die Eintrittstemperatur sinusformig schwankt. Dabei werden
verschiedene Randbedingungen betrachtet: gleichférmige Wirmestromdichte an der Wand und/oder
duBere Konvektionsstromungen mit oder ohne Einfliisse der Wérmekapazitit der Wand. Fiir diese Prob-
leme werden durch Erweiterung der verallgemeinerten Integral-Transformationstechnik analytische Aus-
driicke ermittelt. Die Temperaturamplituden im Stromungskern werden als Funktion der Biot-Zahl, des
Verhiltnisses der Wéarmekapazititen von Fluid und Wand sowie der dimensionsiosen Frequenz der Tem-
peraturschwankung am Eintritt bestimmt. Der EinfluB dieser Variablen auf die Lésung wird diskutiert.
Die Eigenwerte und die entsprechenden Koeffizienten werden tabellarisch angegeben.

HEYCTOMYMBBIA TEIUIONEPEHOC HA TEIUIOBOM BXOAHOM YYACTKE I1PH
JJAMMHAPHOM TEYEHHH C NEPUOJUYECKUM UIMEHEHHWEM TEMIIEPATYPBI HA

BXOJE

AusoTawms—TeopeTHYECKH HCCIIEAYETCH JaMHHAPHAR BBIHYXKICHHAR KOHBEKIMSA Ha TEILIOBOM BXOIHOM
YHacTKe KaHaJla MPAMOYTOAbLHOrO CEYCHHS B YCJIOBHAX CHHYCOMAAJIBHOTO H3MEHEHHsS TEMIEPATyphl Ha
BxoJie. PaccMaTpuBaloTCs HECKOJILKO BHIOB IPaHHYHBIX YCJIOBHH C y4€TOM OAHOPOZHOTO TEIIOBOTO
NIOTOKA HAa CTEHKE W (MJIX) BHENIHEH KOHBEKLMM NPH HAJIMYHH WIH OTCYTCTBHH 3(pexToB TenaoeMxocTn
crenkd. [Tocpencraom Moaudpukannu 06061EHHOTO MeTOAA HHTETPaibHBIX NPeoOpa3oBaHMH NONyYEHB
aHAJINTHYECKHE DEIICHKS HMCCNeNyeMbIX 3anad. OnpelesisioTcs aMILUIMTYAbI TEMNEpaTyphi Ha CpeaHeii
JMHAH KaK QYHKIMH 4HcIa BHo, OTHOINCHHS TEMIOEMKOCTEH XHIKOCTH ¥ CTEHKH, a Takxke Gespasmep-
HOH 4aCTOTHI TEILIOBBIX OCHWLIALMEA Ha Bxoje. OOCyxkaaeTcd BIMSHME YKA3aHHBIX MEPEMEHHBIX Ha
peienue. IIpuBoATCS TabMMIBI COGCTBEHHBIX 3HAYEHHUI H COOTBETCTBYIOINX KO PHUIHEHTOB.



